IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44, NO. 12, DECEMBER 1996

2195

On the Application of Finite Methods in Time
Domain to Anisotropic Dielectric Waveguides

Salvador Gonzilez Garcia, T. Materdey Hung-Bao, Rafael Gémez Martin, and Bernardo Garcia Olmedo

Abstract—This paper presents some general ideas for the con-
struction of explicit finite algorithms to study wave propagation
in dielectric anisotropic waveguides. The goal is to facilitate the
development of different finite schemes through the extension
of the finite-difference time-domain (FDTD) method to study
anisotropic media. Some of these schemes are particularized and
applied to the simulation of the propagation of electromagnetic
waves through planar dielectric anisotropic waveguides.

I. INTRODUCTION

HE FINITE-DIFFERENCE time-domain (FDTD)

method has become one of the most effective tools for
the numerical solution of Maxwell equations. It is based on
the approximation of the derivatives by central differences and
on the use of Yee’s scheme to evaluate the field components
[1]. The rapid growth of the literature on the subject is an
indication of its general acceptance. It has been used to
calculate the radar cross section (RCS) of complex objects
to study the interaction of electromagnetic waves with living
tissue, propagation through dispersive media, microwave
circuits, antennas, propagation of solitons through nonlinear
media, and dielectric optical waveguides. This wide range
of applications is documented by the general references
found in [2]-{30].

The application of finite methods to the treatment of optical-
dielectric waveguides, which often include anisotropic media
in their composition, is one area where this method can
be successfully applied. Several variant versions of FDTD
have recently been proposed [10]-{26] and the treatment
of nondiagonal anisotropic media has been accomplished in
different cases [4], [10], [11], [18], [22], [23].

This paper proposes a simple and systematic procedure
to develop finite methods applicable to anisotropic media,
particularly to optical integrated and microstrip waveguides.

Section II shows that the classical FDTD method cannot
be straightforwardly applied to analyze anisotropic media. An
operational language is introduced to simplify the application
of finite methods to general anisotropic media. Section III
describes algorithms for the time advancement of the values
of the field components for Yee’s grid and for several of its
variants, The expressions are formulated operationally, so that
their computer code can be automatically generated through
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the use of symbolic programs such as Mathematica. Section
IV gives the basic ideas concerning dispersion and stability.
Section V particularizes the results of Section III for two cases
of planar anisotropic waveguides in birefringent media: one
with the optical axis rotated in the plane of the slab and the
other in a plane perpendicular to the plane of the slab. Finally,
in Section VI the described methods are tested.

II. BACKGROUND

Starting from the traditional Yee algorithm, we first propose
some variants that are suitable for the treatment of anisotropic
media, and then we study the effects of fourth-order approx-
imations of the derivatives.

Although the algorithms proposed herein are valid for any
sort of time invariant linear anisotropic electric and/or mag-
netic material, for the sake of simplicity we will limit ourselves
to inhomogeneous anisotropic dielectrics with dielectric tensor

g.

A. Maxwell Equations for Anisotropic Media

A convenient way to express the Maxwell curl equations in
nonconductor anisotropic media is

- oH
VXEZ"/J,E— n
. = OF
§VxH="7 Q)

where £ is the inverse permittivity tensor é~'. The 2 compo-
nent of (2) is

OE, _ o0H, OH, 0H, 0H,
ot "ém< Ay 9z )+ (Emy oz ~dos dy )

8H, 0H,
+ (gzz—a? - gwy_ag‘) .

Observe that on the right-hand side of (3), three kinds
of derivatives, which we call first, second, and third class
derivatives, appear:

1) first class (0H, /0y and 0H, /9z): those multiplied by
the diagonal element of §~, which are the same as the
ones in the isotropic case or when f is diagonal;

2) second class (0H, /0y and 8H,/0z): those with the
magnetic component along the direction of the elec-
tric field component (z) derived with respect to the
perpendicular directions (y, 2);
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3) third class (0H,/0z and OH,/0z): those with the
magnetic components perpendicular to the direction of

the electric field (y,z) derived with respect to the

direction of the electric field (x).

Using secogd—order centered differences for the derivatives, at
the points Pp, = (i+13,j,k)A and the times t = (n+3)At
indicated by Yee’s scheme [1]

A Au
8]0(11,,1)’...) N f<u+751},) _'f<u—T’v"“)
Ju - Au,

and denoting {E, H}(iA, yA kA, nAt) = {E,H}"(i,j,k),
(3) can be approximated by!

EZTMNi+1,4,k)
————
=E (i + %a]: k) + {gww(Hn+1/2(7’ + 2’.7 + k)
N
k)
= &2+ 5.5,k + 1)
7))
+ oy (HPP2(i+ 1,5,k + 1)
— HMY2 (4 L 5 k- 1))
- Ea:z(H;L+1/2(i + %7.7 + %,k)
—H2Y2 i+ 3,5 - 1,K))
n+1/2/- - n+1/2/:
+ & (HPTY2(i 41,5, k) — HPPV2(i, 4, k)
— Eay (HPYY2(0 4 1,5,k) — HPPY2(3i,57K)}. (4

n+1/2 .
_ﬁz /(l+§7.7_'2'

— HyP i+ 5,5,k =

Notice that in (4), the only components actually present
in Yee’s grid [underbraced in (4) and shown in solid lines
in Fig. 1] arise from the discretization of the first class
derivatives. In order to treat the remaining components of (4)
(in dashed lines in Fig. 1), it is clearly necessary to extend
Yee’s original scheme. In this paper we discuss three possible
extensions.

1) The construction of an algorithm that only requires the
components of Yee’s cube, through a sultable approxi-
mation of the derivatives.

2) The modification of Yee’s cube with the addition of
the necessary components in order to use only centered
differences. -

3) The distribution of the components in a different way
and the use of differences as well as means.

To make the process of building the finite schemes more
systematic, some numerical operators will now be defined.
This operational language is especially useful to implement
the algorithms with symbolic calculus programs.

1 Here and in the following we consider the usual explicit time advancing
scheme of Yee’s algorithm, which evaluates the electnc field components at
tp = nAt and the magnetic ones at ty = (n )At with n being an
integer.
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Fig. 1. Octant of Yee’s grid completed with the components needed to
compute E, with only centered differences.

B. Finite Centered Operators

Consider a regular grid with nodes spaced in steps of Au/2
and f(u) sampled at each of its points. Let us define the Shift
Forward F,, and Shift Backward B,, operators as

Fu-f(u)zf(u+—2—)
Bu-f(u)——-f(u—%).

It is easy to show that they form a complete set of operators
such that any other operator involving displacements in the
variable can be obtained as a combination of them; therefore
we term them Fundamental Operators. In particular, the
Centered Differentiation operator is defined as

Dy~ f(u) = 2=(Fu- f(u) = Bu - f(w)

() (%)) @

which is a second-order approximation of the analytical par-
tial differentiation operator. The Centered Mean operator is
similarly defined as

M, - f(u) = -2—(Fu f(w) + By - f(w))

(7)) o

which can easily be shown to be a second-order approximation
in Au of the analytical identity operator. Both (5) and (6) are
called Basic Centered Operators, since any other operator can
also be obtained as a combination of them.

It is also helpful to define the operators D,, and M,,
(Vn > 2), which evaluate the mean and the differentiation
with points displaced +(nAw/2) in the direction u

Dnu-f(u)=ﬁ(f(“+?€—u) SiG)

(e S)

:§(Fuo S o F,+Byo - 0B, f(u)
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where o denotes the composition of operators. To characterize
the degree of approximation of the above operators let us
apply them to functions of the form f(u) = A cos(ku) where
k = 2n/X and X represents the space or time period of f(u).
The relative error (ep) of the centered differentiation operator
and that of the centered mean operator (e3s), when they
approximate the identity and the analytical partial derivative,
respectively, may be bounded in the Taylor series expansion as
flu) =My - flu)] _ K*(Au)?  4x? 1

EpM = = —

Il

f(w) 8 8 R
9f(u)
S o ]
3f(u) 3
ou

where R, = A/Au is the resolution of the variable u. It can
be seen that the approximation is, in both cases, of second
order in Auw.

The composition and linear combination of operators give
rise to other operators with higher-order approximations. For
instance, the Taylor series expansion of f(u) up to fifth order
in Au/2 allows us to define the operators A, and D,,, shown
in (7) and (8) at the bottom of the page, and which results in a
fourth-order approximation of the analytical partial derivative
and identity operators. When these operators are applied to the
cosine-like functions, their error bounds are e3; = %E?M and

65 = 0'28M

III. APPLICATION OF FINITE METHODS TO STUDY
WAVE PROPAGATION IN ANISOTROPIC MEDIA

The FDTD method, like the extensions considered above,
does not place all the field components at each node of a
regular grid, but instead uses a staggered distribution of the
components that allows the saving of memory and computation
time. Consequently, for a given distribution of components,
only the operators that use those components are compatible
with that distribution. The set formed by the distribution of
the field components and the compatible operators employed
is called the numerical scheme of a finite method. Using the
operational language described in the previous section, the
extensions proposed in Section II-A are detailed in this section.

A. Schemes that Use Yee’s Distribution of the Components

The purpose of this extension is to use only the components
placed at the positions of Yee’s grid (Fig. 2) to approximate
Maxwell’s curl equations. As can be seen in (4), the first class
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derivatives can be replaced by the centered differentiation
operator. For the second and third class derivatives it is
necessary to combine the centered mean operator with the
centered differentiation operator to obtain a scheme only
involving the components defined in Yee’s grid. This can be
carried out in the following way:
1) Second class derivatives (for instance H,/dz in Pg_):
as the operator D, needs, for instance, the value H,, (]31)
(see Fig. 2), it can be obtained by applying the operators
M, and M, to average the nearest four components, So
the following operators are needed

D; =
D: =

D, o M, o M,,
D, c M, o M,.

Dy=Dy o M; o M,
®
2) Third class derivatives (for instance dH,/0z in Pg,):

as D, needs, for instance, H,(P,), it is necessary to
differentiate in x and average in z and in z, so let us

define
D:(z) EDw o} M$ o} Mz :DZZ o] Mz
D:(y) =Dy 0o My o My =D, o M, (10)
DZ(w) =Dy o My o M, =Dyy o M,
D;(z) =Dy, o My o M, =Dy, o M, an
D;‘(w) =D, o M, o My, =Dy, o M,
D:(y) =D, o M, o My= Dy, o M,. (12)

At the points of Yee’s grid
ﬁEy = (7’7] + %7]6)’
ﬁHw (Z)]+%7k+%)7

PEz E(Z—l'_ %7.7.7]{")7
=05,k +3)
,=+3,5,k+1),

If

the discretized Maxwell’s curl equations become (13), shown
at the bottom of the next page, and

D, - En+Y2(Py, )
= &y(D. - H}YY2(Pp)) — D, - HYTY2(Pp,))
+ (6D} - HpPY/2(Py,)
— &y D3 HpPY/2(P,))
+ (4ya Dl - HYT/*(Pg,)

— &:D} .y - HITY?(Pg)) (14)
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Fig. 2. Octant of the three-dimensional (3-D) Yee’s grid.

D, - ErTY2(Pg )
= &,2(Dy - HyYV2(Pg,) - Dy - HYTY/2(Pg.))
+ (Ex D - HIHY/2(Pp,)
~ &, D} - HIFY2(Pg.))
+ (&4 D3y - HytV/2(Pg,)

— & Dl - HyPY/%(Pp.)) )

uDy - HY(Py,) = (D, - EX(Py,) — Dy - EX(Pa,))  (16)
uDy - H*(Pu,) = (Do - EX(Py,) ~ D. - EX(Pu,)) (A7)
pDy - H(Pu.) = (Dy - E3(Py.) = Dy - E;(ﬁHz))' (18)

Observe that although this scheme only uses the components
defined in Yee’s cube, it treats each derivative in a different
manner.

The fourth-order operators defined in (7) and (8) can al-
ternatively be used in the above expressions in order to
obtain a fourth-order approximation of the derivatives. As
will then be shown, the resulting algorithm has less phase
dispersion than that of the second-order approximation without
additional memory requirements, and it only requires some
more computation time. This is especially convenient to treat
large problems.
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Ey

Fig. 3. Octant of the 3-D condensed two-node grid.

It can easily be shown that the bOlEl_(} error of the operators
D} and Df, is 7ep and that of D, and D, is llep,
where ep is the bound error of D,,, and e that of D,,.

B. Schemes that Only Use Centered Differences

The second extension proposed places the components in
such a way that only the Centered Differentiation operator
D, (u = {z,y,2}) defined in (5) is used to replace all the
derivatives. The octant of the spatial grid that allows this is
illustrated in Fig. 3. This grid, henceforth called condensed
two-node grid, has a density of 24 components per cell as
opposed to the six components per cell of Yee’s grid. That
is, each component is placed at four different locations within
each octant, so, although in principle this extension seems
advantageous, the memory and computation time requirements
are four times those of Yee. Nevertheless, it will be shown
below that a particularization to a two-dimensional (2-D) case
does not need either additional memory or computation time.

C. Other Schemes

The last extension is based on the placing of all the electric
field components at one node of the grid and all the magnetic
field components at the opposite node [14]. Fig. 4 shows the
octant of this grid, which will henceforth be called two-node
grid. It requires the same number of components per cell as
that of Yee (six), and the advancing algorithm is obtained upon
substitution of all the spatial derivatives by the operators D

(first class)

”~

Dy EV2(Bg.) = o (Dy - HXY4(Pg,) — D, - HpPV2(Pp,) + (&0 D - HEVPY2(Pg,) — €. D - HIHY/2(

+ (€ax Dy - Hy V2 (Pr,) — £y Dy - HE VY2 (Pr,))

N

=~
— =

E.))

~ —

(second class)

(13)

~
(third class)
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TABLE 1
CRITICAL VALUES OF THE COURANT NUMBER C
Two dimensions | Three dimensions

Second order two-node 1 1
Fourth order two-node g g

A A

Second order condensed two—node 7 e
5 _ 6

Fourth order condensed two-node I, 77

H, ﬁ‘
Hy
> A2
E,| H,
= /L—
7.
%
o AR

Fig. 4. Octant of the 3-D two-node grid.

defined in (9) at the points
Py, = (i,5,k), Pu,=(+%i+3k+3)

with v = {z,y, z}. In the same way the operators defined in
(7) and (8) can be used to obtain a fourth-order algorithm.

IV. NUMERICAL DISPERSION AND STABILITY

This section looks at the numerical stability conditions
and dispersion characteristics. The starting point for both is
the establishment of the dispersion relation from the wave
equations. For this purpose let us write Ampere’s law in matrix
form, for anisotropic media

v = = OF
g.R.H:Ei_
and Faraday’s law
P OH
~R.-E= o
with the curl operator R given by
4] o]
0 "%y
IR
Jdy Oz
and the wave equations by
. o2 - .. 82 .
(R-f-R—!—ugﬁ)H:O, (f-R R+u8t2)E’=0

Both wave equations lead to the same dispersion relation,
which is here expressed as an eigenvalue problem

A-€-A+pXi|=0

where A is the eigenvalue matrix of the curl operator, A; is
the eigenvalue of the time derivative operator, and T is the
identity operator. A similar procedure can be followed in the
numerical case, with A now being the eigenvalue matrix of
the numerical curl operator and A, the cigenvalue of D,. If
the numerical curl applied to E is different from that applied
to A , the dispersion relation is obtained from

RP L& AR 4 u2f] =0

with AF and AH being the eigenvalue matrices of the different
numerical curls.

Since the defined operators have the following eigenvalues,
for eigenvectors of the form f(u) = ef*=¥
Au )

and taking into account the algebraic properties of the eigen-
values of composed operators, all the numerical dispersion
relations can be derived. Once ); has been obtained, the
Von-Neumann condition gives the stability criterion

u

sin (ku é——

U

), M, + cos (kué—

D, — 2J

2 2

At

Defining the Courant number in free space as C' = cAt/A,
the critical number under which the different schemes become
unstable is shown in Table L It can be seen that the stability
condition of Yee’s scheme is the same as that of the condensed
two-node scheme since both schemes coincide in the isotropic
case. These stability conditions always provide upper bounds
for the stability conditions of the general anisotropic case.

Re(A) =0, [Im(A)| <

V. APPLICATION TO THE PROPAGATION OF MODES
ON SYMMETRIC SLAB OPTICAL WAVEGUIDES

To study and demonstrate the performance of the previously
described methods we have chosen the two examples described
in [27] and [28] by Marcuse, which study the 2-D propagation
of waves on planar anisotropic uniaxial waveguides. In the
first case [27] the optical axis is not contained in the plane of
the slab, and in the second [28] the slab is coplanar with the
optical axis. Fig. 5 shows the structure of these waveguides.
They are formed by three slabs of anisotropic materials. The
central one (guide) has width 2d and a dielectric tensor &9
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Fig. 5. Structure of the anisotropic waveguides.

with the optical axis forming an angle « with the 2 axis. It is
placed between two slabs (cladding) with a dielectric tensor
£° with an optical axis parallel to that of the guide. In the first
case the optical axis is rotated in the X7 plane, and in the
second in the Y Z plane. This type of guide can be obtained,
for instance, by the diffusion of metals into lithium niobate.

The waveguide is illuminated with a He-Ne laser with a
free space wavelength \g = 0.6328 pm (w = 2.977 - 10%°
rad/seg., k = 9.929 um~!) along the z axis with modes that
are independent of the y coordinate.

Given the invariance of fields along the the y axis (9/dy =
0), the operators needed to simulate this problem are the
centered differentiation (5) and the following simplifications
of (9)-(12):

D:=D, oM, D:=D,oM, (19
Di, =Dy o My o My =Dy, o M-
Diy=Ds © My =Dy, (20)
D:(z) =D, oM, o M, =Dy, o M,

*wy =Ds 0 M, = Da.. @1)

A. Optical Axis Not in the Plane of the Slab

The inverse dielectric tensor of a uniaxial material, with
respect to its principal axes, is

N & 000
=(0 & 0
0 0 &

where & = 1/e1,£3 = 1/e3 and the optical axis lies along
z. If the optical axis is rotated « in the X Z plane and T is
the rotation matrix

~ . §ww 0 ng
E=TET=|0 &, O
§oz 0 &
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This rotation breaks the symmetry of the problem with
respect to the plane & = 0, so that there are no truly sym-
metric or antisymmetric modes. Nevertheless “symmetric” or
“antisymmetric” H, modes are defined® where the amplitude,
not the phase, of that component has the required symmetry.
More details can be found in [27].

As a consequence of f being symmetric and &, = £,y =0,
(1) and (2) are uncoupled in two sets: one for the TE polariza-
tion, which corresponds to an ordinary mode analogous to that
of isotropic materials, and the other for TM, which corresponds
to an extraordinary mode. This latter relates the components
Hy, E; and E, by

OE, (, @ 8
ot - <£xz(‘9; - gmmgg)Hy

OF, 0 0
ot - (Ezza_w - émz'éE)Hy

OH, _OE. OE,
ot Tz T oz

These equations involve what we previously termed first
and third class derivatives. The schemes described in Section
III can easily be particularized from the 3-D case, taking into
account the operators (5), (19)-(21), and the particularizations
of the grids of Figs. 2-4, as described below.

1) Yee’s grid is obtained by spatially distributing the com-

ponents in a plane section Yee’s cube, as in Fig. 6(a).

2) The components of the bidimensional version of the con-

densed two-node grid are placed according to Fig. 6(b).
Its memory requirement is twice that of the other two
alternatives.

3) Finally, the bidimensional two-node grid distributes the

components as in Fig. 6(c).

2In “symmetric” H, modes, H, and E, are “symmetric’ and E, is
“antisymmetric.”
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Fig. 6. Particularizations of the 3-D grids to treat bidimensional propagation in an anisotropic medium with its optical axis not coplanar with the medium.

(a) Yee’s grid. (b) Condensed two-node grid. (c¢) Two-node grid.

The first and third grids have a density of three components
per cell, whereas the second one has six components per cell.

B. Optical Axis in the Plane of the Slab

In this case the optical axis is rotated in the Y Z plane,
and so the problem presents symmetry with respect to the
plane x = 0 and the solutions can be expressed in terms of
symmetric and antisymmetric H, modes.?

The rotated dielectric tensor has the form

(& 00
f = 0 €yy é'yz
0 gyz é.zz

Then, (1) and (2) are not uncoupled, and it is necessary to
use the six field components together

0B, __, oM,
ot 9z
OE, . (oH, 0H, oH,
B ‘Ew( 5z Oz ) T,
OE, . (0H, OH, oH,
o _51’2( 5. oz ) M
OH, _ 0B,

"ot T e

0H, O0OFE, OE,
8t Oz 0z
0H,  0E,
Hot = o
These expressions involve first, second, and third class
derivatives. The three solutions proposed in Section III are
concretized for this case by the operators (5), (19)—(21), and
a particularization of Figs. 2-4 in the following way.

1) Although there is no bi-dimensional section of Yee’s
cube containing the six field components, it is possible
to collapse two sections in the y direction to obtain the
distribution of Fig. 7(a). The algorithm that makes use

3In symmetric Hy modes, Hy, H., and E, are symmetric and E, E:,
and H, are antisymmetric

of only those components is the direct particularization
of the 3-D one. '

2) The condensed two-node grid places its components as
illustrated in Fig. 7(b). As opposed to the general 3-
D case, no additional memory or computation time is
required because only six of the components are needed
in each octant.

3) Finally the bi-dimensional two-node grid is obtained by
collapsing two sections of the 3-D grid, as can be seen
in Fig. 7(c).

All three grids have a density of six components per cell.

VI. RESULTS

This section shows the results for the waveguides described
in Section V. Given the diversity of possible schemes, the tests
have been limited to those that use the same operator for all the
components with comparable memory requirements. For the
first case (optical axis not in the plane of the slab) results for
second- and fourth-order two-node schemes are presented, for
the sake of example. The second case (optical axis in the plane
of the slab) has been simulated with second- and fourth order
two-node and condensed two-node schemes. The theotetical
values of the fields used for comparison are given in detail in
[27] and [28].

A. Optical Axis Not in the Plane of the Slab

In this case a “symmetric” H, mode has been used. The
amplitudes of these modes are (27]

A COS(Hd)e_jade’Y(m"’d) ed(p(z+d)—0z) pjwt
forx < —d

Acos(ka)el (7= givt
for jz| < d

A cos(rd)el7de (2= d) i (p(e—d)=f2) giwt
forz > d

H, = (22)
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Fig. 7. Particularizations of the 3-D grids to treat bidimensional propagation in an anisotropic medium with its optical axis coplanar with the medium.

(@) Yee’s grid. (b) Condensed two-node grid. (c) Two-node grid.

( OH,
w-J; (agz—aji — jBes H, ) for |z| < d
E, = ;7 af (23)
o (sgz 8; —jﬂsszy> for [z|>d
\
-7 OH .
( ;%(nga_my _]ﬁgngy> for '.’L‘|<d
E.=¢ ") oH 24)
(e G - e, ) for >
\
where A is an arbitrary amplitude and
,ng :Enggz - (Egz)27 776 = ‘Eacvwe;z - (sgz)z
5%:1: (agz)Q ne ec,
=, /%= 2 _ \erx)” o — 2 _ Zzz o
o \/50 * w7 (e52)? g €0
€2z _ e
o= egzﬂ’ p= ngﬂ

and « is obtained from the eigenvalue equation
N9 v€qy cos(kd) — ke, sin(kd) = 0.

The parameters of the guide have been set at the values:
width of the guide 2d = 1.274 um, o 30°, ordinary
refractive index in the cladding n., = Ves/eo 2.383,
extraordinary one n.. = +/e§/eq = 2.294, and dielectric
constants of the guide ¢! = ef(1+ §), with ¢ = {1,3} and
6 = 0.1, viz., refractive indexes of the guide Ngo = V111,
and ng. = v/1.1n,.. The mode chosen corresponds to the root
B = 2.335- 107 (wavelength X = 0.2691 um = 0.426X¢).

The simulations were performed at different resolutions.
In order to make significant comparisons with respect to the
isotropic case, the resolution is defined as

)‘gl _ 1 /\0
A T nf A
where A;y is the wavelength of plane waves propagating
along the principal axis of the guide and R is the free-space
resolution. The width of the guide was divided into 52 and
101 cells to obtain approximate resolutions of 10 and 20 cells
per wavelength, respectively. The theoretical envelope of the
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Fig. 8. Optical axis not in the plane of the slab. Theoretical and numerical
results obtained with the fourth-order two-node scheme and a resolution in
the guide of R ~ 20.
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fields is plotted in Fig. 8 compared to the numerical results
obtained with the fourth-order method at R ~ 20.

Fig. 9 shows the envelope of the predominant component
of the electric field (E,) at R ~ 10. The phase error has also
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TABLE 1I
NUMERICAL VALUES OF THE NUMERICAL (3 FOR THE SECOND- AND
FOURTH-ORDER TWO-NODE SCHEMES AT TWO DIFFERENT RESOLUTIONS,
WHEN THE OPTICAL AXis Is NOT IN THE PLANE OF THE SLAB

Two-node (2"¢) | Two-node (4*)
R~ 20 | 2.3429 107 (0.3%) | 2.3334 107 (-0.07%)
R~ 10| 2.3629 107 (1.2%) | 2.3321107 (-0.1%)
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Fig. 9. Optical axis not in the plane of the slab. Comparison between the
results obtained with the fourth-order two-node scheme, the second-order
two-node scheme and the theoretical results. R ~ 10. Envelope of E, after
18.56 A of propagation along the waveguide (200 cells).

been calculated and the numerical propagation constant then
extracted from it (shown in Table II, with its relative error
compared to the theoretical one).

The inclination angle of the H, wavefront can be obtained,
as is seen in (22), from arctan /8 which in the theoretical
case is —1.86°. The value of the numerical angle needs
the numerical value of o, which is obtained from the phase
difference 6, in H, by o,, = 6,,/6,, where §, is the horizontal
separation between two points in the guide at a fixed z. The
numerical inclination angle is —1.92°, viz., it has an error of
4% with respect to the theory.

We have also evaluated the numerical errors both for
the phase and the amplitude. The results obtained by the
different schemes for the mean quadratic deviations between
the theoretical and numerical amplitudes are not significant.
Nevertheless, the phase error, especially in large problems
solved with second order schemes, can become great enough
to produce unacceptable results. Note that the choice of
fourth-order methods allows the use of lower resolutions with
smaller errors than higher resolutions for second-order meth-
ods. Furthermore the phase error of fourth-order algorithms
increases more slowly than that of second-order ones when
the resolution decreases.

B. Optical Axis in the Plane of the Slab

In this case, the fulfillment of the boundary conditions
requires the mixture of ordinary and extraordinary waves. As
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can be seen in [28], the symmetric H, modes are

( (Bwoe%z + Bweevew)e—wzeawt
for z < —d
(Ago c08(KoZ) + Age cos(kez))e™IP7edwt
for |z| < d
(Bmoe—%w + Bme—vew)e—mzejwt
\ forz>d
( (Byo€™® + Byee’Yew)e”jﬂzej“t
for x < —d
) Ayosin(kom) + Aye sin(kex))e 987wt
for |z| < d
L —(Byoe™ % + Byee-%w)e—mzejwt
forz >d
( (Bzoe'y"“” + Bzee%w)e—jﬁzeywt
forz < —d
(Ao8in(koz) + A,e sin(kor))e 7 eiwt
for |z| < d
_(Bzoe—%w + Bzee—vew)e—wzejwt
\ for x > d.

The magnetic field is obtained from the electric field by

A= vxE.
wito
The dispersion relations for the ordinary waves in the guide
and cladding are

2 __ 2 g 2 2 12 2 c
Ky = wpoe] — 8%, 7, = B° — wpee]

and those of the extraordinary wave are

g
K2 =w?poed — B (s,in2 a+ -i—?g’ cos? a),
1
C
fys =p3? (sin2 o+ i—z cos® a) - w2u05§.
1

The four field amplitudes are obtained through the en-
forcement of the continuity of the tangential components in
the guide-cladding boundaries. The equations thus obtained
must be linearly independent so that the determinant of the
coefficients is null. This results in a dispersion relation for the
modes from which the roots 3 can be extracted.

The parameters of the guide are: 2d = 0.5 ym, o = 20°,
Neo = VEj/€0 = 2.28, Nee = /e§/50 = 2.17,6 = 0.04,
Ngo = v/€J /g0 = 1.02n., and ng, = /5 /0 = 1.02nce.

The mode chosen corresponds to 3 = 2.286 - 107 (wave-
length A = 0.275 pum = 0.435)X¢). The amplitudes and the
wavenumber were obtained using Mathematica.

The simulations were performed at approximately the same
resolutions as for the previous case: R ~ 10 (20 cells for the
width of the guide) and R ~ 20 (40 cells for the width of
the guide). The theoretical envelope of the fields is plotted in
Fig. 10 and compared to the numerical results obtained with
the fourth-order condensed two-node scheme at R ~ 20.

Fig. 11 shows the results for the field envelope of the main
component of the magnetic field (H,) obtained with R =~ 10,
and Table III indirectly illustrates the phase errors showing the
numerical propagation constants.

A good agreement between theoretical and computed results
is achieved, even for the less energetic components of the
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TABLE 1II
NUMERICAL VALUES OF THE NUMERICAL 3 FOR THE SECOND- AND FOURTH-ORDER TWO-NODE AND CONDENSED
TwO-NODE SCHEMES AT TwO DIFFERENT RESOLUTIONS, WHEN THE OPTICAL AXIS IS IN THE PLANE OF THE SLAB

Two-node (2*) | Two-node (4**) | Cond. two-node (2"¢) | Cond. two-node (4'*)
R~20 | 22935107 (0.3%) | 22854107 (0.03%) |  2.2940 107 (0.4%) 2.2862 107 (0.01%)
R~ 10 | 23153107 (1.3 %) | 2.2839 107 (-0.09%) 2.3181 107 (1.4%) 2.2866 107 (0.03%)
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Fig. 10. Optical axis in the plane of the slab. Theoretical and numerical
results obtained with the fourth-order condensed two-node scheme and a
resolution in the guide of R ~ 20.

fields. There are no significant differences from the amplitude
point of view between the different methods at different
resolutions, but the phase errors are significantly greater for
the second order results, especially at low resolutions. Similar
conclusions to those of the previous case may be drawn.

VII. CONCLUSION

This paper analyzes different ways of applying finite meth-
ods in the time domain to the simulation of electromagnetic
wave propagation in inhomogeneous anisotropic media. An
overview is given of some general principles for the con-
struction of finite algorithms, similar to Yee’s, but suitable
for the treatment of anisotropic media. It is shown that
a general set of finite operators approximating the partial

870 880 910

-0.055 . 1 1 L L Il J
710 730 750 770 790 810 830 850
Cells

Fig. 11. Optical axis in the plane of the slab. Comparison between the results
obtained with the fourth-order two-node scheme, the second-order two-node
scheme, the fourth-order condensed two-node scheme, the second-order
condensed two-node scheme, and the theoretical results. R ~ 10. Envelope
of H, after 18.15 X of propagation along the waveguide (200 cells).

derivatives to second and fourth order can be obtained that
contain operators compatible with any regular distribution of
components. Considering that the traditional FDTD scheme
is based on a space-time distribution of the components and
on the use of the basic centered differentiation operator,
three approaches to the treatment of anisotropic media have
been considered: choosing other operators, modifying the
distribution, or both. Simple rules for the construction of the
numerical schemes have been proposed that can easily be
implemented through the use of symbolic languages such as
Mathematica™.

Given that there are numerous possible schemes and that
the performance of each is similar for the same order of
approximation, the results presented here are limited to those
of the schemes that use the same operator for all the spatial
derivatives. Variants with second- and fourth-order approxi-
mation in space of the derivatives have been tested in every
case. Testing was carried out by the simulation of single-mode
propagation through planar anisotropic dielectric waveguides.
The results obtained with moderate resolutions are satisfactory
and fourth order schemes show smaller phase errors than
second-order ones, which permits the use of lower resolutions
or the treatment of larger problems for a given absolute error
in the near-fields.
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